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We present a straightforward numerical technique for modeling passive viscoelas-
tic networks, such as the actin cytoskeleton of ameboid cells, in the context of the
immersed boundary method. The technique involves modeling the cytoskeletal ma-
terial as a network of dynamic elastic links immersed in the ambient cytosol. Linking
rules of varying complexity allow the numerical network to exhibit varying degrees
of viscosity, elasticity, shear thinning, and thixotropy (stress-overshoot). A series of
simulated viscometer tests are used to analyze the mechanical properties of the model
networks and the effects of input parameters on these properties. The numerical net-
work is then used in the context of a full-cell model involving simulated micropipette
aspiration. These micropipette aspiration tests indicate that the immersed boundary
method—with the added enhancement of the viscoelastic network model presented
here—can be developed into a versatile tool for studying the free-boundary defor-
mations of passively stressed and actively moving ameboid cells.c© 1998 Academic Press
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1. INTRODUCTION

Viscoelastic materials are ubiquitous in biology. In particular, cells rely on their vis-
coelastic cytoskeletons for mechanical strength and—in the case ofameba proteus, dic-
tyostelium discoideum, human neutrophils, fibroblasts, and sarcoma cells—for active loco-
motion [1, 5, 16]. The immersed boundary method, developed by Peskin [17] to model blood
flow in the heart, has been used to model other biological problems such as platelet aggre-
gation [13], flagellar swimming [12, 11], and bacterial deposition [9]. The distinguishing
feature of this method is that it can be used to model geometrically complex free-boundary
structures as force fields immersed in a larger fluid domain.

In this paper we develop a numerical technique for modeling passive viscoelastic ma-
terial in the context of the immersed boundary method, in order to expand the utility of
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Peskin’s numerical method to a wider range of biological applications. The viscoelastic
model consists of a network of elastic fibers in which the fiber nodes correspond roughly
to the centers of entangled actin “islands.” The mechanical properties of the network are
governed by a set of linking rules that depend on distance, strain, and time. Many of the
linking rule parameters, such as the time required to form a link between two proximate
nodes, have straightforward biological interpretations. Numerical viscometer tests reveal
the mechanical behavior of these networks, which are either viscoelastic fluids or solids,
depending on the input parameter choices. Shear thinning behavior is also evident in the
model networks. A network with appropriately chosen time-dependent linking rules ex-
hibits solid/fluid duality depending on the duration of the applied stress, as well as behavior
reminiscent of thixotropy; the effective viscosity of the ruptured model network increases
with rest time after rupture. In the final section we present a numerical simulation involving
the aspiration of a viscoelastic network-filled model cell into a micropipette.

1.1. Biological Background

The ameboid cell is supported by a cytoskeleton, which consists of a network of mi-
crotubules, intermediate filaments, and actin. While both microtubules and intermediate
filaments contribute to the bulk rheology of ameboid cell cytoplasm, it is the active and
passive remodeling of the actin cytoskeleton that is thought to be largely responsible for
ameboid locomotion. Actin monomers polymerize to form elastic actin filaments, which
in turn are joined by geometry-specific actin crosslinking proteins to form such structures
as rodlike bundles, two-dimensional sheets, and three-dimensional gels [1]. We shall be
interested mainly in the actin gel, which is found in the submembrane cortical layer as well
as in the advancing pseudopodia of ameboid cells.

The rheology of actin gel has been studied bothin vitro andin vivo. Cone-plate viscometer
studies reveal that actin gel can be described as a viscoelastic fluid [5]. The four basic types of
viscous, elastic, and viscoelastic materials are described in Fig. 1. When suddenly subjected
to a constant shearing force, a viscoelastic fluid will deform with gradually diminishing shear
rate. After a characteristic relaxation time, the elastic component of the viscoelastic fluid is
completely loaded and the material continues to deform at a constant rate. When the load
is removed, the elastic component of the material releases its stored energy, causing the
material to rebound only partially back to its original configuration [3, 14].

Actin gel, however, is slightly more complicated than an idealized linear viscoelastic fluid.
Actin gel appears to yield more easily to high stresses than to low stresses, a phenomenon
referred to as shear thinning. Also, actin gel displays a time-dependent behavior referred to
as thixotropy; the gel is stiff when deformed gently, but flows freely when under greater stress
and becomes stiffer the longer it remains unstressed. One explanation for this phenomenon
is that quiescent actin gel consists of interconnected “islands” of crosslinked actin, but
under sufficient stress these islands break apart and slide past each other, providing little
resistance to flow [15].

Micropipette aspiration studies have revealed more about the rheology of actin gel
in a living cell. In these studies, ameboid cells such as the human neutrophil are as-
pirated partially into a micropipette with a diameter smaller than that of the cell. The
distance into the pipette that the cell is drawn is measured as a function of time and as-
piration pressure. Like the viscometer experiments, the micropipette experiments indicate
that actin gel is viscoelastic. Furthermore, the cytoskeleton appears to be solid-like on
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FIG. 1. Creep behavior of linear viscoelastic materials. The ideal elastic element (“spring”) deforms instan-
taneously upon stress loading and returns to its original length instantaneously upon unloading. The ideal viscous
element (“dashpot”) deforms at a constant rate under loading and retains that deformation after unloading. A
typical linear viscoelastic solid (“solid1”) exhibits an initial instantaneous deformation at the instant of loading,
followed by a dampened deformation toward some asymptotic strain. Upon unloading, the solid returns exponen-
tially to its original configuration. A typical linear viscoelastic fluid (“fluid1”) deforms at a diminishing rate which
asymptotically approaches a constant deformation rate. Upon unloading, the fluid rebounds exponentially, but not
all the way to its original configuration. More elaborate models, like “fluid4” (not plotted), can be constructed out
of the basic viscous and elastic elements.

short timescales [22, 6] and more fluid-like, with the cell completely entering the pipette, on
longer timescales [10]. The studies [22, 6] proceed to fit the analytically obtainable creep
functions of linear viscoelastic materials to the deformation-versus-time data from living
cells. The fitted parameters, however, vary with aspiration pressure—in particular, the pa-
rameters corresponding to the viscous elements in the linear models diminish with increasing
aspiration pressure, indicating again that shear thinning is present. Further studies of this
phenomenon indicate that the logarithm of the apparent viscosity of neutrophil cytoplasm
decreases linearly with the log of the mean shear rate of cell entry into the pipette [23].

In Section 2 we present a mathematical model of actin network immersed in aqueous
cytosol. Various rules for the linking dynamics among network nodes are presented. In
Section 4.1, the effects of these linking rules on the mechanical properties of the network
are tested by means of computational viscometer tests. These tests are used to determine
the best-fitting linear viscoelastic model for each model network, as well as examining
the shear thinning behavior and thixotropic properties of two of the model networks. The
model networks are compared again in Section 4.2, this time in the context of the simulated
micropipette aspiration of network-filled cells.

2. MATHEMATICAL FORMULATION

The actin cytoskeleton is modeled as a network ofNA points{A j }NA
j=1 with average spacing

δA immersed in a two-dimensional domainÄ consisting of aqueous cytosol. The motion
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FIG. 2. Elastic interconnections among numerical actin nodes or “islands.”

of the fluid phase is governed by the incompressible Navier–Stokes equations given by

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇ p+ µ1u+ F, (1)

∇ · u = q(x, t) (2)

inÄ, with periodic boundary conditions onÄ. Equation (1) is Newton’s second law, where
ρ is the fluid density,µ is the viscosity,u is the fluid velocity, andF contains all of the forces
transmitted by the network onto the fluid. In Eq. (2),q(x, t)≡ 0 implies incompressibility.
In the micropipette test runs, which involve sources and sinks, we will have nonzeroq on
a vanishingly small subset ofÄ; Eq. (1) is valid on the complement of this subset.

Recall that the cytoskeleton was described in the previous section as interconnected
“islands” of crosslinked actin. Each network nodeA j can therefore be thought of as the
center of one of these islands, and the entanglements or interconnections between any two
of these are then represented as elastic links`i j joining nodesA i andA j . Figure 2 illustrates
an example of such a network.

Let the position of nodej at timet be denoted byA j (t), or simplyA j if time dependence
is understood. The network nodes move at the local fluid velocity. We express this as

d

dt
A j = u(A j , t). (3)

As this network is carried along at the local fluid velocity, it may become strained from
its original or “target” configuration, and as a result, the individual fibers in the network are
strained from their target lengths. The dimensionless strainei j on a link`i j joining nodes
A i andA j is given by

ei j ≡ ‖A i − A j ‖
δAi j

− 1, (4)

whereδAi j denotes the resting length of the link`i j joining the nodes. (It should be noted
that in the limit as maxi j δAi j → 0, the set of strains on the individual links characterize the
Cauchy infinitesimal strain tensor for the material [14, 3].) The strain on a link results in
tension on that link. If the interconnections between actin islands are assumed to act like
Hookean springs up to rupture, then the tensionTi j of link `i j is a linear function of the
strain, given by

Ti j ≡ Si j ei j , (5)

whereSi j is the spring stiffness constant for the link`i j andei j is the strain as defined in (4).
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In a general sense,(Si j ) and (δAi j ) can be thought of as sparse symmetric matrices
that characterize the interactions between interacting nodes and, therefore, the mechanical
behavior of the entire network. In this paper we will consider four types of networks with
differing linking and forcing rules: the “control” network, the “memory” network, the
“(capture) annulus” network, and the “time-dependent” network.

1. Control network. In this network, all the spring constantsSi j are set to zero, so that
there is no linking and the only mechanical properties of the network/fluid composite are
those of the ambient fluid.

2. Memory network. Proximate nodes at timet = 0 are joined for all time, with constant
resting length and constant spring constants, regardless of the strains on the links. In terms
of our mathematical formulation, we write this as

δAi j (t) = ‖A i (0)− A j (0)‖
Si j (t) = Si j (0)

(6)

for all t > 0, whereSi j (0)= SA> 0 if rminδA< ‖A i (0)−A j (0)‖< rmaxδA, andSi j (0)= 0
otherwise. In all of the memory network simulations in this paper,rmin= 0.8 andrmax= 1.8.

3. Capture annulus network. Let rminδA and rmaxδA denote the inner and outer radii
of an annular region centered at a nodeA j . At each timet , the nodesA j and A i are
linked by a spring with constant resting lengthδA and constant stiffnessSA as long as
rminδA< ‖A i − A j ‖< rmaxδA, that is, as long asA i is insideA j ’s “capture annulus.” This
set of linking rules is intended to correspond to the tendency for inter-island connections
to rupture under excessive tension and to fold easily under excessive compression. (See
Fig. 3.)

4. Time-dependent network. Let tform denote the time required for a link between two
proximate nodes to form, and letttot denote the total age of the link, including formation
time, before the link decays (disconnects). Letr rupt denote the strain rupture ratio for the
links, and letrminδA andrmaxδA be the inner and outer capture radii. Finally, letSA be a
constant elastic stiffness. The linking rules proceed as follows: for any nodeA j ,

(a) If another nodeA i enters the “capture annulus” aroundA j at time t = t0 and
remains in that capture annulus for a duration oftform seconds, then at timet1= t0 + tform

the nodesA j andA i are joined by a link̀ i j with resting lengthδAi j ≡‖A i (t1) − A j (t1)‖
and stiffness constantSA.

(b) As soon as either (i) the strain ratioei j + 1 of link `i j exceeds the strain rupture
thresholdr rupt or (ii) t ≥ t0+ ttot, the link`i j is ruptured. If at this timeA i is still inside the
capture annulus ofA j and it remains there for an additional timetform, the link may reform
with a new resting length, according to rule (a). See Fig. 3.

The time-dependent link formation criterion (4a) is intended to resemble the tendency of
connections between separated islands of polymerized actin to reform, given sufficient time
near each other (and thus sufficiently low shear rates). The link disruption criteria given in
(4b) are supposed to capture the tendency of actin fibers to rupture under excessive strain
as well as the continual remodeling process that the cytoskeleton undergoes in a living cell.

To determine the force density per unit area passed to the two-dimensional fluid domain
by the internal network tension forces, we have to study the mechanical properties of the
numerical network in the limit of spatial refinement, that is, as the characteristic node
spacing distanceδA→ 0. In this limit, the discrete actin points{A j } become dense in a
closed two-dimensional subregionA ofÄ; thus for this discussion we consider the actin to
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FIG. 3. Linking rules of the capture annulus and time-dependent networks. Under thecapture annulusrules
(left), the pointA i is not linked to the pointA j when it is at (A) since it is not in the shaded annular capture region
of A j . As soon asA i moves into the region it is immediately linked (B) toA j by an elastic element of constant
resting lengthδA (represented by darker circle inside shaded region).A i remains linked as it passes through the
region (C), but becomes unlinked upon exiting (D and E), linked again after reentering (F), and unlinked again at
(G). Note that the link̀ i j between the points is under tension (B), compression (C), and is relaxed (F) at various
points of its movement. Under thetime-dependent linking rules, when the previously unlinked (A) pointA i

enters the capture annulus ofA j at position (B) and remains (C) in the region untilt = t1≡ t0 + tform, then a link
is established with resting length equal to the distance between the points at the moment they are linked (D). The
link can persist even ifA i leaves the capture region (F) and will break (G) if the strainei j on the link exceeds the
ratio r rupt or if the link exceeds a certain age, that is, ift > t0 + ttot.

be a continuum material{A(r, s) | (r, s)∈ I A⊂R2} parameterized by the mapA : I A→Ä.
We determine the net force exerted by the surrounding network upon a small subset1A of
the actin network parameterized by the rectangle1R= [r1, r2] × [s1, s2] by summing the
forces exerted on the four edges, or “faces,” of its boundary:

F =
∫ r2

r1

Ts(r, s2)− Ts(r, s1) dr +
∫ s2

s1

Tr (r2, s)− Tr (r1, s) ds. (7)

HereTs= ns ·σ‖∂A/∂r ‖ is the force per parametric elementdr due to the stress tensorσ
exerted on the edge of1Awith outward normalns≡ (∂A/∂s)/‖∂A/∂s‖. The normalization
factor‖∂A/∂r ‖ is needed because the two-dimensional stress tensorσ is measured in force
per arc length. The interpretation ofTs in terms of the actin network is best stated as follows:
the quantity ∫ r2

r1

Ts(r, s2) dr (8)

is the limit asδA→ 0 of the sum of the forces exerted upon the actin nodes inside1A
by actin nodes outside1A via links passing through thes2 “face” (given by{A(r, s2) | r ∈
[r1, r2]}) of 1A (see Fig. 4).

By applying the fundamental theorem of calculus to (7), we establish the net forceF on
1A to be

F =
∫ r2

r1

∫ s2

s1

∂

∂s
(Ts) ds dr+

∫ s2

s1

∫ r2

r1

∂

∂r
(Tr ) dr ds=

∫ ∫
1R

∂

∂s
(Ts)+ ∂

∂r
(Tr ) dr2. (9)

Thus the force density per unit area ofparameter spaceis given by

f = ∂

∂s
(Ts)+ ∂

∂r
(Tr ) = ∇ · T, (10)
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FIG. 4. An element1A=A(1R) of the actin continuum. The thickened segment on the upper face of1R
is stretched byA(r, s) by a factor of‖∂A/∂r ‖, andns · σ gives the force per unit length transmitted across thes2

“face” of 1A.

and the discretized force density, that is, the net forcef j on each nodeA j , is

f j = 1

δA

∑
i

Ti j
A i − A j

‖A i − A j ‖ , (11)

whereδA (∼1r ∼1s) is the spacing parameter (and in passive networks, resting length) for
the actin network andTi j is the tension in the link joiningA i andA j , determined according
to one of the forcing rules discussed above. The force applied by thediscretizedstructure
onto the fluid is then found by setting1r =1s= δA and using a discrete version of the
integral in (9):

Fn =
NA∑
j=1

f j (t)δ(A j (t)− x)(δA)2, (12)

whereδ is the dirac delta function.

3. COMPUTATIONAL METHOD

In order to implement the above formulation numerically, we discretize both space and
time. The square fluid domainÄ= [0, L]× [0, L] is discretized as anNG× NG square grid
with spacing1x= L/NG. The Navier–Stokes equations (1) are discretized as

ρ

(
un+1− un

1t
+

η∑
s=1

un
s D±s un

)
= −D0 pn+1+ µ

η∑
s=1

D+s D−s un+1+ Fn (13)

D0 · un+1 = qn, (14)

wheren= t/1t denotes the timestep,D+ is the forward difference operator,D− is the
backward difference,D0 is the center difference,D0· denotes discrete center difference
divergence,D±s is upwind difference (ifσ = sign(us) thenD±s ≡ D−σs ), andη is the number
of dimensions, in our case two [18]. This discretization is well-suited to the simulations
that follow because the nonlinear velocity term is treated explicitly in time, allowing the
parabolic viscosity term to be solved implicitly by fast Fourier transforms. The explicit
treatment of the nonlinear term does not pose a stability problem in this case since the
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simulations take place at a low Reynolds numbers(Re∼ 10−5). The explicit treatment
of the force termFn and the sink termqn, however, requires that the time step1t be
sufficiently small to prevent numerical instability. While implicit forcing methods (using
Fn+1) have been used to stabilize the immersed boundary method for larger time steps, such
an improvement has not yet been considered for this method.

Givenun and{An
i }, a single timestep of this simulation proceeds as follows:

1. The immersed points{An
i } are moved according to the interpolated local fluid velocity

to compute{An+1
i } analogously to (3),

An+1
i = An

i +1t
NG − 1∑
k,l=0

un
kl d
(
xn

i − k1x
)

d
(
yn

i − l1x
)
(1x)2, (15)

whereAn
i = (xn

i , yn
i ) andd(r ) is the discrete delta function originally used by Peskin in

[17]:

d(r ) =
{

1
41x

(
1+ cos

(
πr

21x

))
, |r | < 21x,

0, |r | ≥ 21x.
(16)

2. The resulting strain on the links among the points is measured, and restoring forces
f i are assigned to all of the points according to (11) and (10).

3. Since the mass of the network is inherited from the ambient fluid, the internal network
forces are transmitted directly to the surrounding fluid. The forceFn

kl at the finite-difference
lattice node(k1x, l1x) is computed by replacing the dirac delta function in (12) by the
discrete delta functiond(r ) given in (16):

Fkl =
NA∑
i=1

f i d(xi − k1x) d(yi − l1x)(δA)2. (17)

TheFn computed at each node in the discretized fluid domain is entered as the force term
in the discretized Navier–Stokes equations (13).

4. If the pressure drop is being set in order to simulate micropipette aspiration,q(x, t)
is updated and passed to the fluid grid in (14).

5. The discretized Navier–Stokes equations (13) and (14) are solved by a fast Fourier
transform method to obtainun+1. For details of the method used see [19, 18, or 4].

Note that one of the features of the immersed boundary method is that the mechanical
properties of the immersed structures affect the fluid solver only in the explicit force term.
This allows the modeling of complex immersed structures by use of fast fluid solvers on
simple computational domains.

4. COMPUTATIONAL RESULTS

4.1. Wall Shear Experiments

In the complete ameboid locomotion model, the actin cytoskeletal network acts in con-
junction with the cell membrane, transmembrane focal attachments, and the substratum
in order to produce locomotion. The passive mechanical properties of the actin network
alone are therefore difficult to measure in this context, so we have devised a computational
experimental “apparatus” to test in isolation the actin network subject to the various forcing
and linking rules presented in Section 2.
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FIG. 5. Numerical apparatus for testing shear stress vs strain rate behavior of model actin network. The
network–fluid composite occupies the space between the fixed walls, on both sides of the moving (forced) wall.
The deformationd(t) is determined by tracking the displacement of fluid markers from their original (dashed line)
positions to their strained (solid line) configuration.

4.1.1. Setup of Numerical Apparatus

The apparatus, shown in Fig. 5, consists of two stationary immersed boundary walls
flanking a movable immersed boundary wall. The numerical network occupies the space
between the walls. The initial configuration of the actin nodes is established as follows;
they are distributed in a regular hexagonal pattern with spacing ofδA between nodes, then
each node is displaced uniformly randomly from the hexagonal pattern with a maximum
displacement of 0.75δA. A horizontal shearing forceFs is applied to the wall and, in order
to prevent the wall from deviating from its original planey= yw, it is constrained in the
vertical direction.

Since the material on either side of the forced wall is identical, half of the shearing force
Fs applied along the wall is transmitted to the material on each side. The stress tensor at
any point immediately on either side of the wall is, therefore,

σ =
[

0 Fs/2L
Fs/2L 0

]
, (18)

whereL is the length of the walls. There is no variation in thex direction, so the strain
tensor in the network simplifies to

ε =
[

∂ν
∂x

∂ν
∂y + ∂ω

∂x
∂ν
∂y + ∂ω

∂x
∂ω
∂y

]
=
[

0 ∂ν
∂y

∂ν
∂y 0

]
, (19)

where(ν, ω) gives the displacement field of the material. Thus if we measure the horizontal
displacementd(t) of a point in the stressed wall as a function of time, we can determine the
mean strain and strain rate experienced by the material between the moving and fixed walls,
reducing the experimental data to a single variable and simplifying the subsequent analysis.

In order to measure the behavior of the material in both the stressed and unstressed state,
we use a time-dependent step-loading function of the form

Fs = F0(H(t)− H(t − tr )), (20)

whereF0 is the force magnitude,H is the heaviside function, andtr is the time of stress
unloading.

We measure the “strain history” of the network by recording at regular time intervals the
horizontal displacementd(t) of a marker point initially located in the center of the moving
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FIG. 6. Numerical network shear tests for various networks at the instant of stress unloading. The circular
fluid markers are arranged perpendicularly to the walls at timet = 0.

wall. Snapshots of each run at timet = tr are shown in Fig. 6. All of the runs in this section
were executed on a 64× 64 fluid grid.

4.1.2. Assessment of Mechanical Properties of Numerical Networks

The qualitative mechanical behavior of the different types of numerical cytoskeletal
networks was assessed by attempting to fit strain evolution curves of various mechanical
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models to the strain data from the runs. The five nontrivial linear viscoelastic models we
considered are shown in Fig. 1. For each model one can obtain a differential equation relating
the forceF , extensiond, and rate of extensioṅd for the system. We solved these equations
for d(t) subject to the prescribed forceFs(t) given in (20) withF0/L = 0.01 dyn/cm. This
solutiond(t) is referred to as thecreep function for constant stressfor t ≤ tr and thecreep
function for the unloaded phaseof the material fort > tr [14, 3].

Next, we used the Levenberg–Marquardt method [21] to fit the model parameters to
the data generated by each numerical experiment fort ≤ tr , that is, for theloading phase
only of the simulation. These fitted values were then used to predict the unloading phase
of the run in order to assess how well that model described the mechanical properties of
that cytoskeletal network for that run. In other words, for each run, the model with the
smallest “full merit function” (the sum of the squares of the error, taken over both loading
and unloading phases) was considered to best describe the mechanical properties of the
network. Since models with more parameters will in general be able to fit as well as or
better than the models with fewer parameters, the model with the fewest parameters that
described the data nearly as well as the models with more parameters was considered to
be the simplest, most adequate description of the behavior of that network. The results of
these tests are illustrated in Fig. 7.

The best-fitting model for the control run (fluid only) was the Maxwell element, which
is a spring connected in series with a dashpot. The fitted spring constantκ was very high in
this case, which was to be expected, since the limiting behavior of the Maxwell element as
κ→∞ is that of a simple dashpot with viscosityη.

The memory network behavior was fit well by the Voigt model, which consists of a spring
with stiffnessκ linked in parallel to a dashpot with viscosityη. This is not surprising since
the Voigt model is essentially a damped spring, corresponding to the numerical network
springs damped by the viscous fluid in which the nodes are immersed.

Both the capture annulus and the time-dependent networks sheared easily as though they
were fluid, and when the load was removed, they rebounded only slightly. This viscoelastic
fluid behavior was best characterized by the three-element fluid model (Fluid1 in Fig. 1).
For the capture annulus network, the fit over the unloading phase was much better in the
low fiber stiffness case(SA= 0.24) than in the higher stiffness case(SA= 0.48); this may
be evidence of the insufficiency of the linear models in describing the mechanical behavior
of these numerical networks, which will be further explored in the next section.

It is interesting to note that during loading of the capture annulus and “time dependent”
networks the velocity of the wall that shears this material (the slope of the graphed data
points in Fig. 7) is nearly constant, and more importantly, is smaller than the velocity in the
control. Thus the dynamic linking in these networks increases the effective viscosity (for
this particular force magnitude) of the material between the plates.

A behavioral feature observed in living cytoplasm but not yet reproduced by this numerical
model is an instantaneous initial deformation the moment that the stress is applied. Two
mechanical models often used to describe the cytoskeleton, referred to in Fig. 1 as Solid1 [22]
and Fluid4 [5], exhibit this behavior. The numerical model does not exhibit this instantaneous
deformation because the movement of the network elements are necessarily damped by the
ambient fluid in which they are immersed. This is the case in actual cytoskeleton as well;
there is friction between the actin fibers and the cytosol. This apparent shortcoming of the
numerical model might be overcome by increasing the force magnitude and spring stiffness
constants relative to the ambient fluid viscosity. This has not yet been explored in detail,
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FIG. 7. Results of model fitting to data ouput from wall-shearing tests. Fitting results for network fiber
stiffness constantSA= 0.48 (top) andSA= 0.24 (bottom). The curves were fitted only for the loading phase of the
simulation, and the fitted values were then used to predict the unloading behavior for that run. The simplest linear
viscoelastic model from Fig. 1 with the best fit to both loading and unloading phases is shown.

but comparison between the “Fluid1” curve fitted to the time-dependent network data for
SA= 0.24 and the curve fitted to the data from the same network forSA= 0.48 would
indicate that an instantaneous deformation-type behavior is indeed being approached with
increasing fiber stiffness.

4.1.3. Shear Thinning Behavior

Unlike any of the linear viscoelastic models to which it has been compared, living
cell cytoskeleton appears to exhibit a shear thinning behavior [23]; for example, in the
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FIG. 8. Stress versus steady-state strain rate curves for capture annulus network. The steady-state viscosity
of the network was tested for different values of the elastic link stiffness constantSA, given in dynes.

micropipette studies described in [22], the dashpot viscosity obtained by fitting the aspira-
tion distance data to the Solid1 model (see Fig. 1) is inversely proportional to the aspiration
pressure that acted upon the cell. The following numerical studies indicate that both the
capture annulus and time-dependent networks behave as shear thinning materials.

The stressσ versus strain ratėε curves for each network were determined by subjecting
each to a constant shearing force for sufficient time to ensure that a constant velocity was
reached. The resulting(ε̇, σ ) coordinate was then plotted for various stress magnitudes.
Furthermore, the numerical parameters for the networks were varied in order to observe the
affects of those parameters on the rheology of the simulated materials.

Figure 8 illustrates the stress-strain rate relationships for the capture annulus network
for various values of the elastic link stiffnessSA. The SA= 0 case (unimpeded fluid) is
included for comparison. Note that the network–fluid composite material behaves in a
nonlinear (non-Newtonian) fashion for nonzero values ofSA; in particular, the capture
annulus network exhibits shear thinning behavior. Not surprisingly, the material becomes
“stiffer” as the stiffnessSA is increased. The numerical parameters of the capture annulus
network, their effects on the rheology of the network–fluid composite, and their possible
biophysical interpretations are summarized in Table I.

In Fig. 9 we observe the effect ofSA on the rheology of the time-dependent network.
Once again, this network behaves like a shear thinning viscoelastic fluid and increasingSA

stiffens the network. The smoothness of the stress–strain rate curves for the time-dependent
network suggests that this numerical network responds more predictably than the annulus
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TABLE I

Numerical Parameters of the Capture Annulus Linking Rules

Parameter Default Rheological
name value effect Description; biological interpretation

SA 0.48 dyn/cm Stiffening Stiffness constant; the aggregate stiffness of the actin filaments
joining two islands of crosslinked actin.

rmax 1.8 Stiffening Outer capture radius ratio; if set to equal to 1, the network will
have only compressive forces. If increased, increases number
of links at each node.

rmin 0.8 Relaxing Inner capture radius ratio; if set equal to 1, the network will have
only tension forces. If decreased, can increase the number
of links at each node.

Note.The “Rheological effect” column gives the effect of increasing the parameter on the rheological behavior
of the numerical network.

network to variations in stress magnitude. This may make the time-dependent network rules
more desirable for implementation in the mechanical modeling of cells. In Fig. 10, we see
the qualitatively different effects of the link total age durationttot on network rheology.
Table II summarizes the effects of the time-dependent network parameters on observed
rheology.

FIG. 9. Stress versus steady-state strain rate curves for time-dependent network. The steady-state viscosity
of the network was tested for different values of the elastic link stiffness constantSA, given in dynes.
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FIG. 10. Stress versus steady-state strain rate curves for time-dependent network. The steady-state viscosity
of the network was tested for different values ofttot, given in seconds.

4.1.4. Stress Overshoot

Up to this point, it would appear that the “capture-annulus” and time-dependent network
rules exhibit roughly the same mechanical behavior. Both act like a viscoelastic fluid under
shear stress, and both exhibit shear thinning when subjected to increasing stresses. The
capture-annulus rules, however, model a network that reforms instantaneously when the
shear stress is removed, whereasin vitro actin gels appear to reform with a resistance to
strain that increases with the square root of the time after removal of stress, an effect referred
to as thixotropy [15]. The time-dependent rules were devised in order to reproduce thisin
vitro behavior.

To test if thixotropy is indeed observed in the numerical “time” network and not in the
“capture-annulus” network, the following numerical experiment was devised using the same
geometric setup as the previous tests. After an unstressed initialization period of one second,
the numerical network was subjected to a stress of 0.08 dyn/cm, sufficient to rupture the
network, for a duration of 3 s. After a period oftrest seconds of “rest,” a shearing force
of 0.04 dyn/cm was once more applied to the network. The mean strain rate over the first
second of re-stress was then observed.

The results of these tests are shown in Fig. 11. As expected, the capture-annulus network
exhibits the same behavior regardless of rest time. The time-dependent network, however,
becomes more resistant to strain the longer it has been allowed to “rest” and reform. Figure 12
shows the effective viscosityµe of the time-dependent network as a function of rest time
trest. In this figure we see that, although the experimentally observedµe∼√trestrelationship
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TABLE II

Numerical Parameters for the Time-Dependent Linking Rules

Parameter Default Rheological
name value effect Description and biological interpretation

SA 0.48 dyn/cm Stiffening Stiffness constant; the aggregate stiffness of the actin filaments
joining two islands of crosslinked actin.

rmax 1.8 Stiffening outer capture radius ratio; if set equal to 1, the network will have
only compressive forces. If increased, increases number of
links at each node.

rmin 0.8 Relaxing Inner capture radius ratio; if set equal to 1, the network will
have only tension forces. If decreased, can increase the
number of links at each node.

r rupt 1.2 Stiffening The strain ratio at which a link joining two islands ruptures.
The stress vs. strain rate curve forrrupt= 1.0 is not the same
as the curve forrrupt= 0.0 (simple fluid), indicating that
compressive forces also play a role in the mechanical
behavior of the network.

tform 0.25 sec Relaxing Link formation time; corresponds to the length of time required
for actin network to form between two existing islands of
crosslinked actin.

ttot 0.75 sec Stiffening Total age of links (includingtform) before rupture. Intended
to correspond to the constant remodeling of cytoskeleton.

Note. The “Rheological effect” column gives the effect of increasing the parameter on the behavior of the
numerical network.

between effective viscosity and rest time does not appear in the numerical simulation, the
effective viscosity of the time-dependent network does increase with rest time. The time-
dependent network fails to exhibit theµe∼√trest behavior because of the deterministic
nature of the link formation rules. It is evident from Fig. 12 that the effective viscosity of
the network increases significantly astrestapproaches the link formation timetform, resulting
in a greater number of network links and, consequently, a higher effective viscosity. Linking
rules involving a stochastic component may be able to better simulate the desired relationship
betweentrest andµe, but this would be at the computational expense of a call to a random
number generator for each node–node interaction. To summarize, while the time-dependent
network does not reproduce the experimentally observed functional relationship betweenµe

andtrest, it provides a qualitative improvement over the time-independent “capture annulus”
rules.

4.1.5. Convergence of Numerical Scheme and Estimate of Computational Expense

Although there is no formal proof for the convergence of the immersed boundary method
in more than one space dimension, we can test empirically for numerical convergence by
successively refining the resolution for a fixed test run. If the norm of the difference be-
tween numerical solutions of successive refinement decreases with the level of refinement,
this can be taken as evidence that the sequence of increasingly refined numerical solutions
forms a Cauchy sequence that converges to some solution. A convergence study of this
type was conducted in [4] and linear convergence of the method was observed. These stud-
ies measured the convergence of thecontrol, memory, andcapture annulusnetworks to
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FIG. 11. Evolution of strain resistance in ruptured numerical networks. Note that the capture annulus network
(a) seems to retain no information of how long it has been resting; the strain rates are independent of rest time.
In the time-dependent network (b), however, the longer the rest time, the more resistant to strain the network is
when stress is reapplied. Shown are the strain curves of the material aftertrest= 0.5 and 1.0 s of rest (a) and after
trest= 0.0, 0.5, 1.0, and 1.5 s of rest (b).
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FIG. 12. Relationship between rest timetrest and effective viscosityµe in time-dependent network. The
effective viscosity was determined by measuring the mean strain rate exhibited by the network over the initial
second following reapplication of shear force. The dashed vertical line indicates the formation timetform= 0.75 s,
at which point there is an increase in the number of elastic links and, therefore, in the effective viscosity of the
network.

creep deformation behaviors of the type shown in Fig. 7. Since the most complex behavior
consistently observed for thetime-dependentnetwork is shear-thinning, more recent con-
vergence studies have been directed toward demonstrating the numerical convergence of
this network to a specific stress versus strain rate relationship. Figure 13 and Table III pro-
vide evidence that the time-dependent network exhibits linear convergence in stress versus
strain rate behavior.

A typical wall shearing run using a 64× 64 fluid lattice and a total of 600 actin nodes
required approximately 36 min of computational time per second of simulated physical

TABLE III

Convergence Study of Strain Rate ˙ε as a Function of Applied

Stress in the Time-Dependent Network

Norm→ L1 L2 L∞

‖ε̇32− ε̇64‖/‖ε̇64‖ 0.0742 0.0072 0.0914
‖ε̇64− ε̇128‖/‖ε̇128‖ 0.0368 0.0023 0.0532
Convergence ratio 0.4968 0.3135 0.5827

Note. The subscripts oḟε denoteNG, the number of fluid grid lattice points
used. The convergence ratios indicate that the shear thinning behavior of
the network converges linearly with increased spatial resolution.



            

104 DEAN C. BOTTINO

FIG. 13. Numerical convergence of wall shearing simulations under time-dependent linking rules. Shown is
the stress versus strain rate behavior of the test network for successive fluid grid refinements of 32× 32, 64× 64,
and 128× 128 lattice points.

time running on a single DEC Alpha 2100-5/250 processor. A similar run on a 128× 128
fluid lattice with 2200 actin nodes required approximately 156 min of computational time
per second of simulated time.

4.2. Micropipette Aspiration Simulations

Numerical simulations modeled after thein vivo micropipette aspiration experiments
[22, 6, 10, 23] may reveal the aggregate mechanical properties of the model cell, as well
as the individual properties of the cell membrane and the actin cytoskeleton under various
linking and forcing rules. Although the ultimate goal of this research is to simulate ameboid
locomotion, there are several advantages to first simulating biological experiments such
as micropipette aspiration. First of all, the biological experiments provide better-defined
quantitative and qualitative information to which the numerical results can be compared.
Second, the numerical experiments provide an environment in which it is easier to measure
the effects of numerical parameters on the passive mechanical behavior of individual cell
components as well as the effects of these components on the entire model cell.

4.2.1. Setup of Model Cell and Numerical Apparatus

The model cell is initially circular in shape, with radiusrc. The cell membrane is modeled
as an impermeable immersed boundary loop{M(s, t)} for s∈ [0, 2πrc]. Initially, M(s, 0)
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TABLE IV

Default Parameter Values Used in Wall Shearing and Micropipette

Aspiration Simulations

Parameter Description Value

1t Timestep 0.0001–0.00025 s

L Length of square fluid domain 0.0025 cm

NG Number of finite-difference grid 64
spaces in fluid domain
(1x= L/NG)

δA Interior actin spacing parameter 21x

δA′ Membrane-embedded actin anchor 1x
2

spacing parameter

µ Viscosity of immersing fluid 0.01138 cm2/s

ρ Density of immersing fluid 1 g/cm2

SM Membrane stiffness constant 4× 10−5 dyn

SA-cyto Stiffness of cytoplasmic (interior) 0.48 dyn/cm
actin links

SA-anchor Stiffness of fibers linking interior actin 0.1SA-cyto

points to the membrane-embedded
actin anchors

Note. The dimensions of the fluid density and subsequent parameters differ from the
dimensions of their physical counterparts by a factor of length−1; this is due to the fact
that the simulations were carried out in two dimensions.

describes a circle of radiusrc and the numerical actin network fills the interior of the
circle, with the outermost actin nodes acting as anchors embedded in the membrane.1

At any time t the local dimensionless straine(s) at a point on the membrane is given
by e(s)=‖∂M/∂s‖−1. Studies involving human neutrophils indicate that ameboid cells
have up to 137% excess membrane area relative to what they would need to enclose their
volume in a sphere [6]. As a result, the membrane unfolds with little or no resistance up
to its maximum area, at which point it strongly resists further increases in area. If we
think of the length of{M(s, t)} in our two-dimensional model as the “effective area” of the
membrane, folding included, we would like{M(s, t)} to stretch easily up to, say, twice its
original length (corresponding locally toe(s)= 1) before becoming strongly inextensible.
Therefore, instead of a Hookean stress–strain relationship for the membrane, we chose
one of the formT(s)= SMe(s)(10ˆ(e(s)γ )).2 The tension stress-strain relationships for the
casesγ = 0 (Hooke’s law) andγ = 9 (used in these simulations) are compared in Fig. 14.

1 In living cells, the actin cytoskeleton is thought to largely occupy the cortical region immediately beneath the
cell membrane. For the purpose of this two-dimensional simulation the contributions of the network mechanics
to the mechanics of the entire model cell are more significant if the numerical network is distributed throughout
the cell, with a disproportionate density of membrane-embedded actin nodes in order to increase the amount of
elastic fibers beneath the model membrane.

2 This functional form was chosen arbitrarily because it had the desired property of a rapid transition from
weak compression to strong tension. Although it may be possible to use statistical mechanics to derive from first
principles a functional form forT , such an improvement would be unlikely to have a significant impact on these
simulations.
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FIG. 14. Comparison of Hookean (dashed line) and nonlinear (solid curve) stress-strain relationships. The
membrane is relaxed at its initial configuration for the Hookean(γ = 0) rule as well as for the nonlinear(γ = 9)
forcing rule. When the membrane is compressed (negative strain ratio), the Hookean forcing would cause the
membrane to resist linearly, while the nonlinear forcing would allow the membrane to “fold” easily. For strain
ratios up to 1, the nonlinear forcing rule provides little resistance, corresponding to membrane unfolding. At local
doubling of length (marked by an asterisk), the nonlinear forcing scheme begins to strongly resist any further
lengthening, thereby modeling a taut membrane.

The force densityfM along the membrane is given by

fM = ∂

∂s
(Tτ ), (21)

whereT = T(s) is the tension andτ = τ (s) is the unit tangent vector to{M} at the point
M(s, t) [20].

The membrane{M(s, t)} is discretized as a loop of points{M i } with an initial spacing
of1s=1x/4, where1x is the finite difference fluid grid spacing introduced in Section 3.
This initial spacing is chosen so that when the membrane is stretched tautly, the spacing will
be doubled; this maximum spacing of1x/2 has been observed in numerical experiments to
be sufficient to maintain the impermeability of the model membrane to normal fluid flow.
The discretization of (21) at each pointM i is

f i = 1

1s

(
Ti+1/2

M i+1−M i

‖M i+1−M i ‖ + Ti−1/2
M i−1−M i

‖M i−1−M i ‖
)
, (22)

whereTi+1/2 gives the tension between the pointsM i andM i+1. In a similar manner to (17),
these forces are spread to the fluid grid via

Fkl =
∑

i

f i d(xi − k1x)d(yi − l1x)1s. (23)

The movement of membrane points in the simulation must be handled differently than
other immersed boundary points in order to properly model the cell membrane’s unique
mechanical properties. In particular, the high diffusivity of membrane phospholipids is
believed to allow the integral membrane proteins which bind internal actin filaments to
slide freely in the plane of the membrane. As a result, several previous models of ameboid
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cell motion have considered a no-penetration, free-slip condition for the interface between
the actin cytoskeleton and the plasma membrane [2, 7, 8]. In order to satisfy this interface
condition, we update the membrane points{Mn

i } as follows. At each timestep,

1. In a similar manner to the immersed actin nodes in (15), the points{M i } are moved
at the local fluid velocity according to

Mn+1/2
i = Mn

i +1t
∑
k,l

un
kld
(
xn

i − k1x
)
d
(
yn

i − l1x
)
(1x)2. (24)

2. A periodic cubic spline is then interpolated through the points{Mn+1/2
i }, and the points

are redistributed evenly along the spline to obtain{Mn+1
i }.

Therefore the curve described by the membrane moves at the local fluid velocity, but the
points inside the curve are being continually redistributed. As a result, the local tension is
constant throughout the membrane. More importantly, the actin network nodes originally
embedded in the model membrane remain embedded, but the model membrane slips freely
past these nodes in the tangential direction.

The numerical apparatus for micropipette aspiration, shown in Fig. 15, consists of the
passive model cell and a rigid pipette. The pipette, composed of a neck and a bulb, is
tethered to fixed points in space and is also supported throughout by a series of “buttresses,”
or crosslinks among its immersed boundary points. The pressure drop1pacross the opening
of the pipette is established by way of a mass sink inside the micropipette bulb and a source
outside the pipette. The support of the source and the sink, on which the Navier–Stokes
momentum balance equation (1) is no longer valid, is chosen to be as far away as possible

FIG. 15. Initial configuration of numerical apparatus for micropipette aspiration simulations. The source
along the indicated diagonal line and the sink in the middle of the pipette bulb work together in order to conserve
mass and to establish the target pressure drop. For the purpose of illustration, only a few of the crosslinks that
maintain the rigidity of the pipette are shown. The simulated domain is 25µm across. The pipette diameter is
approximately 10µm across, the typical speed of the aspirated tip is 1µm/s, and the effective viscosity of the
model cytoplasm ranges from 0.01138 cm2/s to an order of magnitude higher. Thus the Reynolds numbers for
these simulations—and their experimental counterparts—range from 10−5 to 10−6.
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from the immersed structures and therefore from the dynamics of interest. The details of
how the pressure drop is established and maintained are given in [4]. In order to determine
the effects of the periodicity of the fluid domain on the behavior of the numerical apparatus,
two test runs were compared. In the first, the standard setup was used, in which the pipette
and model cell apparatus nearly completely occupies the 25µm2 64× 64 node fluid domain.
In the second, a 128× 128 node fluid domain twice as large(50µm across) was used for
the same size apparatus. The deformation distanced(t) of the cell into the pipette during
suction and release was compared in the two runs, and the maximum difference ind(t)
in the two runs was found to be less than 0.5%. It is evident from these tests that the
effects of periodicity on the output of these numerical simulations are negligible. All of the
simulations that follow were conducted using the 64× 64 node 25µm fluid grid.

4.2.2. Effects of Model Cell Components on Behavior of Entire Cell

Micropipette aspiration was simulated in model cells with various mechanical properties.
The first tested cell, called thecontrol cell, consisted of a fluid-filled, membrane-bound
vesicle, but all of the cell’s internal forces were set to zero. Mechanically, this was simply a
simulation in which a ring of fluid markers was drawn into the pipette. The second test cell
was themembranecell, in which the membrane dynamics of nonlinear forcing and spline
reinterpolation were in effect but the interior of the cell consisted only of the immersing
fluid. Thememory cell had the membrane forcing rules in effect, as well as the memory
network rules (see Section 2) governing the mechanics of the cell interior. Theannuluscell
and thetime cell also had the membrane forcing activated, as well as the capture annulus and
time-dependent network rules, respectively, governing the cytoskeletal linking dynamics in
these test cells.

The micropipette aspiration simulations began with a 4-s loading phase, in which a sim-
ulated pressure drop,1p, measured from the exterior environment to the pipette bulb was
immediately established and maintained for 4 s. In the unloading phase, the simulated pres-
sure was quickly equilibrated and the model cell was allowed to rebound from its strained
configuration. Figure 16 provides a qualitative comparison of the effects of the different
model cell components on the aggregate passive mechanical behavior of the simulated
cell.

A more quantitative analysis can be made by measuring the deformation distanced(t)
of the model cell’s protrusion into the pipette neck as a function of time. In experimental
studies this one-dimensional quantity is often used to describe the three-dimensional process
of cell deformation into the pipette since the creep behavior of a viscoelastic sphere under
small deformations is proportional to the creep behavior of a one-dimensional viscoelastic
solid [22]. The results of these measurements are shown in Fig. 17. The control cell’s strain
history is exactly what one would expect of unrestricted fluid flow into the pipette. The
membrane cell, since its membrane satisfies a free-slip boundary condition at the pipette
wall and, since its initial configuration is at half of its maximum strain, provides very little
resistance to micropipette suction. Upon unloading, the membrane cell rebounds slightly,
apparently in an attempt to equilibrate membrane curvature from a parabolic shape to a
more circular shape.

In the memory, annulus, and time cells, the membrane-embedded actin nodes satisfy a
no-slip condition at the pipette opening, but the membrane again satisfies a free-slip con-
dition, both relative to the pipette walls and to the membrane-embedded actin nodes. In all
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FIG. 16. Comparison of model cell mechanical components in the context of micropipette aspiration simula-
tions.

three simulations we see that the numerical actin network inhibits flow of the cell protrusion
into the pipette. The memory cell behaves as the memory network did in the wall shear
tests; it strongly resists deformation and rebounds exponentially toward its original circular
shape in the manner of a Voigt solid. The annulus and time cells behave similarly to each
other. Note, however, that the time cell deforms more than the annulus cell, while the time
network in the wall-shearing experiments shown in Fig. 7 deformslessthan the annulus
network. This is because the micropipette aspiration simulation lasts four times longer in
simulated time than the wall shearing test. The time network that comprises the interior
of the time cell has a total link agettot on the order of 1 s, so the turnover of the links is
manifested as a more fluid-like behavior on longer timescales. Indeed, in the first 2 s of
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FIG. 17. Aspiration distance plots for various membrane and network linking and forcing rules. Note that
the curves interpolated though the numerical data points are not fitted curves but rather have been added for data
visualization purposes.

simulated time, the time cell deformslessthan the annulus cell, but then the two strain
histories intersect and thereafter the time network is less resistant to stress.

It should be noted that the model cell does not rebound linearly to a circular shape upon
equilibration of pressure. The linear rebound observed in living cells is believed to be due
to active contractions in the actin cortex [10]. The viscoelastic network model presented
here does not yet include these actomyosin contractions.

4.2.3. Shear Thinning

In preliminary simulations of micropipette aspiration over a range of aspiration pressures
from 1p= 0.05 to1p= 0.20 dyn/cm, the model cell cytoskeleton did not exhibit shear
thinning behavior. Experimentally, the logarithm of cell cytoplasmic viscosity decreases
linearly with the logarithm of mean shear rate experienced by the cell protrusion as it is drawn
into the pipette [23]. One possible reason that this experimentally observed relationship did
not appear is presented in Fig. 18, in which the logarithm of the effective viscosity of the
time-dependent network is plotted against the strain rate experienced by the network. The
data were obtained from the wall shearing tests in Section 4.1. It is evident from the figure
that for lower strain rates, the effective viscosity of the model network remains relatively
constant, but for higher strain rates the network enters a regime in which the logarithm of its
effective viscosity does decrease linearly with increasing strain rate. Whether the rheology
exhibited by the aspired model cell would enter such a regime under higher strain rates has
not yet been tested.
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FIG. 18. A log–log plot of the relationship between strain rate and effective viscosity from the wall-shearing
test of the time-dependent network. For low strain rates, the network effective viscosity remains relatively constant,
but for higher strain rates ln(µe) decreases linearly with ln(ε̇).

5. DISCUSSION

We have presented a method for modeling passive viscoelastic networks in the context
of the immersed boundary method. As we saw in Section 4.1, the network with the memory
linking rules behaved like a simple Voigt solid while the capture-annulus and time-dependent
networks behaved mechanically like viscoelastic fluids. As shown in Section 4.1.3, the time-
dependent and capture-annulus networks exhibit shear thinning behavior when exposed to
increasing shear rates. Only the time-dependent network exhibited behavior resembling
thixotropy; when ruptured, the effective viscosity of the network would increase the longer
the network remained unstressed. The micropipette aspiration simulations in Section 4.2
demonstrated the utility of the model network in the context of modeling passive ameboid
cells. Once a three-dimensional cell model of this type is developed, simulations of such
in vivo tests as cell aspiration and cell squashing may be used to validate the model by
comparing it to experimental data.

There are two significant advantages provided by this method over simply using a con-
tinuum viscoelastic model throughout the computational domain. The first advantage is
that the method presented here allows for the possibility of two-phase flow in the model
cell interior. For example, if the actin node spacingδA is sufficiently large, the immersing
Newtonian fluid will be able to flow relative to the actin network, thereby mimicking the
flow of aqueous cytosol relative to the porous cytoskeleton in living cells. Alternatively, the
actin nodes could be allowed to slip relative to the immersing fluid, resulting in the same
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effect. The second advantage of using this method is the ability to model an extracellular
environment that is much less viscous and effectively Newtonian relative to the cell interior,
for example, in the case of cell tumbling in a flow chamber, or of a locomoting ameboid
cell in an aqueous medium.

Augmented by the technique presented in this paper, the immersed boundary method
is now capable of modeling biological problems involving viscoelastic networks. The
advantage of the immersed boundary method is that it allows for the modeling of free-
boundary biofluid dynamics problems by expressing the objects of interest as flexible,
elastic structures immersed in a simple computational fluid domain. Possible applica-
tions of this technique include passive cell deformation, such as the tumbling of white
blood cells in arteries, active ameboid cell locomotion, for example the extravasation
and chemotaxis of phagocytes toward wound sites, and external fluid dynamics, like the
beating of cilia in a viscoelastic mucous medium. Refinements of the method currently
being considered include the modeling of active actomyosin contraction, two-phase cy-
toskeletal/cytosolic flow, protrusive force generation via actin polymerization, and brownian
motion.

5.1. Additional Material

Animations of some of the wall-shearing runs and micropipette aspiration simulations
have been converted to QuicktimeTM movies and posted on the World Wide Web at the
following location:

http://www.math.utah.edu/˜bottino/research/passive cyto/

passive cyto.html.
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